328712(28)

B. E. (Seventh Semester) Examination, April-May 2020

(Old Scheme)

(Et&T Engg. Branch)

MICROWAVE COMMUNICATION & ENGINEERING

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) of each question is compulsory. Solve any two from part (b), (c) and (d). Answer in sequence only. Assume the missing data.

Unit-I

(b) Democratic conformation properties and collidaring

- 1. (a) What do you mean by critical frequency? 2
 - (b) Explain how earth magnetic field affects the propogation of radiowave in the mosphere.

(c) (i)	Give the difference between maximum usable						
	frequency	(MUF)	and	optimum	working		
	frequency.		TR.C				

(ii) Prove that skip distance (D) is given by

E. F. (Severals Semester) Examination.

$$D = 2h\sqrt{\left(\frac{f}{f_c}\right)^2 - 1}$$

3

(d) The observed critical frequency of E and F layer at Guwahati at a particular time are 2.5 MHz and 8.4 MHz respectively. Calculate the maximum electrons concentration of the layer.

guardingeness are not Unit-II on the out from 1 to 160

- 2. (a) What do you mean by velocity modulation?
 - (b) Derive the expression for output power and efficiency for reflex klystron and prove that $\eta_{max} = 22 \cdot 7\%$.
 - (c) What do you mean by magnetron? Explain its principle and operation.
 - (d) A two cavity Klystron is operated at 10 GHz with, Beam voltage : $V_0 = 900 \text{ V}$

Beam current : $I_0 = 30 \text{ mA}$

Gap spacing : d = 1 mm

Spacing between cavities : L = 4 cm

Effective shunt resistance : $R_{sh} = 40 \text{ k}\Omega$

Neglecting beam loading:

Calculate:

- (i) Inpute RF voltage (V_1) for maximum output voltage.
- (ii) Voltage gain
- (iii) Efficiency

Unit-III

- 3. (a) What do you mean by transfer electron device (TED)?
 - (b) What do you mean by GUNN Diode? Explain its various mode of operation.
 - (c) (i) What do you mean by Avalanche Transit Time device? Explain the operation of IMPATT diode. 5
 - (ii) An IMPATT diode has a drift length of $2\mu m$.

328712(28)

328712(28)

7

PTO

-5
0.7
L -

[4]	
Determine (Taking $V_d = 10^5$ cm/sec).	
(a) The drift time of the carrier	
(b) The operation frequency of the diode	2
(d) Explain the V-I characteristics of Tunnel diode and	
explain Tunnel diode w.r.t. energy band.	7
Unit-IV	
(a) What do you mean by s-parameter and write its properties?	2
(b) Derive the s-parameter matrix for magic Tee and	
explain why it is called magic Tee.	7
(c) How we can measure microwave power using biometric method?	7
(d) In an H-plane Tee junction, 20 mW power is applied to port-3 that is perfectly matched to the junction.	
Calculate the power delivered to the load 60Ω	
and 75Ω connected to port-1 and port-2.	
If the characteristic impedance of line is 50Ω .	7

).	(a) Sketch attenuation response for constant k, in	
	derived and composite filter.	2
	(b) Explain how low pass to high pass frequency transformation can be achieved.	7
	(c) Explain the process of filter design using insertion loss method.	7
	(d) Explain impedance scaling and frequency scaling related to filter formation.	.7

10]